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Abstract
We investigate ray dynamical properties and resonance patterns of a spiral-
shaped dielectric microcavity in which quasiscarred resonances can be
supported. The ray dynamical properties of this open system can be
characterized by the steady probability distribution which contains information
of the dynamics and the openness of the chaotic microcavity. It is shown
that the quasiscarring phenomenon can be understood by considering the
unique properties of wave propagation at the dielectric boundary. The
bouncing positions of the quasiscarred resonances are explained through a
semiclassical quantization condition with Maslov indices. We also show
qualitative agreements between the ray dynamical distributions and the wave
dynamical distributions obtained from the average over resonance modes.

PACS numbers: 05.45.Mt, 42.55.Sa

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Microcavity (micro-disk, micro-cylinder or micro-droplet) lasers have been much studied
recently as a new idea that might replace purely electronic large-scale integrated circuits by
photonic or optoelectrical circuits [1]. Initial interest was concentrated on generating high Q
resonances. The high Q modes of microcavity lasers are based on the so-called whispering
gallery modes (WGMs) in which rays circulate inside the boundary of circular microcavity and
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are completely confined by total internal reflection. The advantage of these modes is the small
loss only due to evanescent leakage (tunneling) and scattering from the surface roughness.
Although the microcavity lasers based on WGM exhibit a high performance of low-threshold
current density and low noise, they suffer from small output powers and isotropic emissions
because of the high-reflectivity and the rotational symmetry.

In this respect, however, asymmetric resonant cavities (ARC) are a more promising
concept to achieve high power and directional emissions. Gmachl et al [2] have reported that
a completely different type of resonance compared to WGM, so-called bow-tie resonance,
emerges and is responsible for highly directional and high-power emission for ‘flattened’
quadrupole shape cavity laser. Since then, many different boundary shapes smoothly deformed
from circle, e.g., ellipse, quadrupole, hexadecapole, etc, are studied so far. (Note that most of
these ARCs are not ‘truly’ asymmetric because they have reflection symmetries for the major
and minor axes of cavities.) Their far-field emission patterns show reproducible anisotropic
patterns and dramatic sensitivity depending on the boundary shapes [3]. Most recently,
Chern et al reported that even unidirectional emissions are possible from a truly asymmetric
microcavity, a spiral-shaped microcavity [4]. Besides the photonics applications, such as
optical computing and networking, the study of deformed microcavities can also provide
invaluable pedagogical insight into cavity quantum electrodynamics [5, 6], chaotic transport
phenomena [7–9] and even the theory of quantum chaos [1].

In general, statistics of quantum mechanical eigenvalues and eigenfunctions of classically
chaotic systems can be well described by random matrix theory (RMT) [10]. From the
viewpoint of RMT the existence of scarred eigenfunctions [11], which show an enhanced
probability amplitude along an unstable periodic orbit, cannot be justified. The scar
phenomenon would, therefore, be regarded as the first correction on RMT containing specific
information of the chaotic system concerned [12–16]. The scar phenomenon has been the
most intriguing aspect of quantum manifestations of classical chaos. Since the seminal
finding of scarred eigenfunctions in a chaotic stadium billiard has been reported by Heller
[11], many authors have studied this abnormal phenomenon both theoretically and numerically
to understand the impact of classical periodic orbits in various chaotic systems [11, 17, 18].
Experimental investigations of quantum chaos have been performed in various contexts, such
as microwave cavity, quantum dots, surface waves, etc [19–23], since the original microwave
experiment had been performed in 1990 by Stöckman and Stein [24]. Scarred modes were
first noted by Sridhar and Heller [25] in the microwave experiment of Sinai billiard.

The recent growing interests in microcavity lasers naturally bring up again the topic of
observing evidences of scarred modes in optical systems. There are series of reports on the
observation of scarred lasing modes in dielectric microcavities of various boundary shapes
[26–29]. In these papers, the authors have identified the scarred lasing modes by matching the
directionality of lasing emission (far-field emission pattern) and possible unstable periodic orbit
in the chaotic microcavities. They took it for granted that the scar theory of chaotic billiards
would be applied to the resonances of microcavities without any modification. However,
basically dielectric microcavities have quite different classical dynamics compared with that
of billiard systems. The major differences are twofold. First, it is an open system, i.e., the
energy confined in cavity is a decreasing function of time and the energy loss corresponds
to the escaping energy by emission. Second, the refractive index n plays a crucial role in
characterizing ray dynamics in the microcavities, e.g., it determines the critical angle of total
internal reflection, θc = arcsin(1/n), and θc is, in turn, closely related to the directionality of
rays on the boundary. We note that these inherent characteristics of dielectric cavities can give
rise to important and enormous differences in resonance patterns. For example, the spatial
splitting in the scarred resonance pattern with incident angles of ∼θc and the unique far-field
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Figure 1. The spiral-shaped microcavity with ε = 0.1. It is fully chaotic and asymmetric. The
phase space coordinates (s, p) are shown.

distribution of high Q scarred resonances [30] can be understood based on the characteristics of
dielectric cavities. A more striking example should be the existence of quasiscarred resonances
in dielectric cavities [31].

In this paper, we discuss extensively the ray and wave dynamical properties in a spiral-
shaped microcavity. The spiral-shaped microcavity has a special geometry in which the
quasiscarred resonances dominate at some n values [31]. The aim of this paper is to understand
the quasiscarring phenomenon through the ray and wave dynamical properties. In section 2, we
introduce the steady probability distribution (SPD) and explain the ray dynamical properties
based on the SPD in the spiral-shaped microcavity. We present resonance patterns and discuss
about the quasiscarring phenomenon in section 3, and in section 4 the bouncing position of
the quasiscarred patterns is explained through a semiclassical quantization condition. A brief
comparison between the ray and the wave dynamical results is given in section 5, and we
conclude in the final section.

2. Ray dynamics

In this section, we first explain the steady probability distribution which is a distribution
in phase space (s, p), s is the boundary coordinate and p is its conjugate variable defined
by p = sin θ , where θ is the incident angle (see figure 1). The SPD characterizes both
the dynamical behaviors and the openness of the chaotic dielectric microcavities [30–32].
The basic concept of the SPD can be directly applicable to other open systems with chaotic
dynamics. We discuss the ray dynamical properties of the spiral-shaped microcavity based on
the SPD, and show that the periodic orbits in the spiral-shaped cavity have at least one bounce
from the notch.

2.1. Steady probability distribution

The dielectric microcavity is an open system, which is an important difference from typical
billiards, closed systems. At the boundary of the dielectric cavity the internal waves can
partially transmit according to the Fresnel equations, thus the energy confined in the cavity
would decrease with time. When the boundary geometry gives completely chaotic dynamics,
due to this leaky property, the ray trajectory starting an arbitrary initial point (s0, p0) cannot
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survive an infinitely long time so that it cannot fills the whole phase space evenly as in the
billiard case. Even in the case that (s0, p0) locates in the total internal reflection region
(1/n < |p0| < 1), the ray would diffuse along unstable manifolds and eventually reach the
open region (0 < |p0| < 1/n) and partially escapes. As a result, when we consider an
ensemble of initial points, the rays distribute, after a transient time, on some structure of
unstable manifolds containing the open property of the systems in the phase space, which
is the basic concept of the SPD and is very useful to understand the resonance properties
[31, 30].

The basic physical object characterizing the dynamical properties in an open system is the
survival probability distribution P̃ (s, p, t) [32]. Its integration over the phase space would
give the survival probability P̃ (t) and P̃ (t) = ∫

ds dpP̃ (s, p, t) � 1, where the equality
holds only at t = 0 due to the energy loss by emission in the dielectric cavity. The initial
distribution can be arbitrary when the system is fully chaotic, but here we consider a uniform
initial distribution, P̃ (s, p, t = 0) = 2/sm, where sm is the total length of the perimeter of the
cavity. The confined energy and escape time distribution can then be described by

E(t) = E0

∫
ds dpP̃ (s, p, t), (1)

Pes(t) = 1

〈d〉
∫

ds dpP̃ (s, p, t)T (p), (2)

where E0 is the initial energy confined in the cavity and 〈d〉 is the average length of ray
segment between two successive bounces. Here, the length of the trajectory can be regarded
as time. T (p) is the transmission coefficient, which has nonzero value in the range of
−pc < p < pc(pc = sin θc = 1/n), given by Fresnel’s equation [33],

T = 4n cos(θi) cos(θt )

(n cos(θi) + cos(θt ))2
, (3)

for TM wave where cos(θi) =
√

1 − p2 and cos(θt ) =
√

1 − n2p2 by Snell’s law. Since
the confined energy decreases by the ray transmission through cavity boundary, the relation
between the confined energy and the escape time distribution is given by

dE(t)

dt
= −E0Pes(t). (4)

The above equations are generally satisfied by construction.
It is well known that in hyperbolic chaotic scattering the survival probability of a particle in

the scattering region decays exponentially with time, while in nonhyperbolic chaotic scattering
does algebraically due to the stickiness of KAM surfaces [34–37]. The same argument holds
in dielectric cavities. If the internal ray dynamics is chaotic, then the survival probability and
the escape time distribution Pes(t) have exponential tails [32]. The exponential tail of Pes(t)

implies that the survival probability distribution P̃ (s, p, t) can separate into time part and
phase space part, i.e.,

P̃ (s, p, t) = B(t)Ps(s, p). (5)

Since the phase space part Ps(s, p) is statistically invariant with time, it is called as the steady
probability distribution.

Substituting equation (5) into equations (1), (2) and, in turn, into equation (4), we can
obtain the exponential time behavior, B(t) = exp(−γ t). The decay rate γ is given by

γ = 1

〈d〉
∫

ds dpPs(s, p)T (p). (6)
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We get, therefore, the exponential behaviors of the confined energy and the escape probability
distribution at the long time tail,

E(t) = E0 exp(−γ t), (7)

Pes(t) = γ exp(−γ t). (8)

We emphasize that in chaotic microcavity systems the steady probability distribution
Ps(s, p) plays a central role to characterize the long time behavior of the ray dynamics
which is associated with the patterns of high Q resonances [30]. The near-field and far-field
distributions based on the ray dynamics are then expressed as

Pnear(s) ∝
∫

dpPs(s, p)T (p), (9)

Pfar(φ) ∝
∫

ds dpPs(s, p)T (p)δ(φ − f (s, p)), (10)

where the far-field angle φ is given as f (s, p) determined by the geometry of boundary and
Snell’s law. The refraction angle distribution is

Pref(θt ) ∝
∫

ds dpPs(s, p)T (p)δ(θt − g(p)), (11)

where g(p) = arcsin(np). Since the steady probability distribution Ps(s, p) illustrates the long
time behavior of the ray dynamics in the dielectric cavity, it is natural to expect that Ps(s, p)

would give some information about the pattern formation of resonances with relatively high
Q which are supported mainly by the rays having long trajectories before escaping. These
relationships will be discussed in section 5.

2.2. The spiral-shaped boundary geometry

The spiral-shaped microcavity has been introduced by Chern et al [4] to generate unidirectional
lasing emission, and the boundary shape is given by

r(φ) = R
(

1 +
ε

2π
φ
)

(12)

in the polar coordinates (r, φ), where R is the radius of the spiral at φ = 0 and ε is the
deformation parameter and we set ε = 0.1 throughout the paper (see figure 1). The spiral
geometry of the cavity has interesting aspects compared with typical shapes treated in the
previous studies. First, the internal ray dynamics is fully chaotic. A trajectory starting from an
arbitrary initial point (s0, p0) fills evenly the whole phase space (s, p) when refractive escapes
are ignored. Second, it is totally asymmetric, i.e., does not have any continuous or discrete
symmetries, which results in the chirality of the SPD and even resonance patterns (see figures 6
and 7).

The internal rays in the spiral-shaped cavity have a simple flow. Consider a ray circulating
clockwisely (p0 < 0). As long as the ray circulates clockwise, there is no chance to bounce
off from the notch and the negative incident angle increases gradually and, after some bounces,
change its circulating direction, i.e., circulates counterclockwise (p > 0). Then the incident
angle of the ray increases (p increases) gradually until it bounces off from the notch. After
that, the ray again circulates clockwise and repeats the above description. Note that the p
value of the ray always increases except the case that the ray hits the notch.

In order to obtain numerical results for Pes(t) and Ps(s, p), let us consider an ensemble
of initial points which are uniformly distributed on the 700 × 700 grid points over the whole
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Figure 2. The escape time distributions Pes(t) when n = 2 and 3 in the spiral-shaped microcavity
with ε = 0.1. These show exponential long time behaviors, which is typical in fully chaotic
systems.

phase space. The rays starting from the initial points would suffer bounces from the boundary,
and some rays with |p| > 1/n are totally reflected and the other rays are partially transmitted
through the boundary with probability T (p). After this process the points are rearranged and
weighted. If the transmission probabilities of each rays are summed up in the time interval
(t, t + δ), then we can get numerically the escape time distribution Pes(t). The numerical
results are shown in figure 2 for n = 2 and 3 cases. A characteristic feature of Pes(t) is the
exponential decay behavior, which is typical in fully chaotic systems as mentioned before.

Figure 3(a) shows the approximate steady probability distribution Ps(s, p) for n = 3
(the similar distribution for n = 2 is shown in figure 2(a) in [31]), given by normalizing the
survival probability distribution P̃ (s, p, t) in the time range of 57 < t < 60 for the uniform
ensemble of initial points. The structure of the approximate Ps(s, p) is almost invariant in
other time ranges of the exponential region in figure 2. The restricted distribution of the SPD
in p < 0 region means that most of the rays, after the transient time, circulate clockwisely,
which is very different from the stadium shape cavity [32], and means the strong chirality
of the spiral-shaped microcavity. This chiral property will be also appeared in resonance
patterns in the following section. In the details of the SPD we can see tentacular structure and
some fine structures. These structures reveal the result of mixing of two structures, one is of
the unstable manifolds given by the boundary geometry and the other is of the openness of
dielectric cavity determined by the Fresnel equations. From the SPDs it is clear that the rays
escape refractively at the notch and just above the critical line (−pc = −1/n).

Since the rays near the critical line p = −pc play a central role in the formation of the
quasiscarred resonances [31], it is necessary to follow the ray trajectories and see what type
of polygon is similar to those. In fact, this is easily expected from a consideration of circular
cavity under an assumption that the deformation parameter ε = 0.1 would not give a big
change from the case. For n = 2 case, the critical angle θc is arcsin(1/2) = π/6 and therefore
the ray with the incident angle θc follows the triangular periodic orbit in a circular cavity. Also,
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(a) (b)

Figure 3. (a) The steady probability distributions Ps(s, p), when n = 3. (b) The distance
distributions dm=5(s, p) after five bounces. The similar distribution for n = 2 case is shown in
figure 2 in [31]. From the comparison between Ps(s, p) and dm(s, p), it is clear that the partially
reflected rays near p = −pc (red line) make roughly (not exact) a triangle shape (n = 2) and a
star shape (n = 3) trajectories.

for n = 3 case, θc = arcsin(1/3) � 0.3398 is similar to π/10 � 0.314, the incident angle
required to make a star-shaped periodic orbit in the circular cavity. To check this expectation,
we show the distance distribution, defined as dm(si, pi) = (sf − si)

2 + (pf − pi)
2, where

(si, pi) is the initial position and (sf , pf ) being the position after m bounces. We note that in
figure 3(b) the critical line p = −pc lies on the dark region representing the initial positions
which give low values of d5 (d3 is shown in figure 2(b) in [31]). Therefore, we confirm that the
rays reflected near the critical line p = −pc would make roughly the triangle shape (n = 2)

and star shape (n = 3) geometries. As discussed later in section 3, the imprint of this fact
appears apparently in resonance patterns.

2.3. Periodic orbits in the spiral-shaped geometry

Here, we prove the absence of periodic orbits of simple geometry such as triangle and star
shapes. In other words, we have to prove the nonexistence of periodic orbits without bouncing
the notch, i.e., all periodic orbits must bounce the notch more than once. Let us define Di

as the distance between the origin and the ith ray-segment determined by a line from si−1 to
si on the boundary (see figure 4(a)). Now, consider two different cases. The first case is the
arbitrary ith ray-segment that moves around the origin in counterclockwise sense and the other
is the clockwise case.

Case 1. If the ith ray-segment moves counterclockwisely around the origin, the distance Di

is always increasing after bouncing off from the boundary. It is easy to see by introducing
a virtual circle passing the ith bouncing point and having a common origin with the spiral
as shown in figure 4(a). This condition is satisfied by any number of points on the spiral
perimeter since r(φ) is always increasing as φ increases. So, we get the following relation:
Di < Di+1 < Di+2 < · · ·. If there is a periodic orbit of N-bouncing on the spiral perimeter,
it must satisfy the relation: Di = Di+N . This relation is definitely contradictory with the
previous one. So, if the ray-segment moves counterclockwisely around the origin, it never
makes a periodic orbit without bouncing at the notch.

Case 2. If the ith ray-segment moves clockwisely around the origin, we can say that the
distance Di is always decreasing after bouncing while the ray-segment moves clockwisely
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(a) (b)

Figure 4. (a) The distance Di always increases for counterclockwisely propagating rays if they do
not hit the notch part. (b) The clockwisely propagating rays eventually change their direction of
rotation after bouncing ball type trajectory. (The dotted line is a virtual circle passing ith bouncing
point and having a common origin with the spiral.)

around the origin. However, unlike the case 1, when Di becomes close to zero, the ray-segment
turns its rotational direction from clockwise to counterclockwise as shown in figure 4(b).
Then, the case 2 reduces to the case 1. Such a turning always occurs in the clockwise case
eventually as far as it does not hit the notch. As a result, we can conclude there is no periodic
orbit without bouncing the notch.

3. Wave dynamics

In this section, we present resonance positions around Re(nkR) � 110, and corresponding
resonance patterns in the spiral-shaped microcavity for n = 2 and 3. This direct numerical
calculation of the resonances can improve the physical insight into the pattern formation in
microcavities through the comparison with the ray dynamical analysis in the previous section.

We use the boundary element method [38] to get the resonance positions and patterns.
Since the spiral shape has two nonanalytic points which invoke the infinite curvature problem
in the boundary element method, we round the corners with circle with a radius r. The radius r
should be much less than λ = 2π/Re(nkR) so that the wave cannot be aware of the rounding.
In principle, it is possible to get all resonances in a finite range of Re(nkR), but it requires
much time in practical calculations. Therefore, we take the following strategy to find a part
of resonances. We consider a tension function T (nkR) [39] which is a measure indicating
how far away kR is from the resonance positions, so if T (nkiR) = 0 then the nkiR is just
a resonance position. We first evaluate the tension on the three straight lines in the complex
kR plane which are Im(kR) = 0.04, 0.08 and 0.12 in the range of 109.5 < Re(nkR) < 111.
Then, starting from the positions giving local minima of the tension on the lines, we apply
Newton’s method to find the resonance positions. In our calculations, we divide the boundary
into 1000 elements, i.e., 900 elements on the perimeter of the spiral part and 100 elements on
the notch part, which approximately correspond to more than 8 elements per wavelength λ on
the boundary.

3.1. Resonance positions

Figure 5 shows the resonance positions for n = 2 and 3 in the spiral-shaped microcavity.
We find 30 resonances for n = 2 and 24 resonances for n = 3. These numbers are surely
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Figure 5. The resonance positions. The solid circles and the open triangles represent resonance
positions for n = 2 and 3, respectively.

much smaller than the expected total numbers, i.e., about 91, which is estimated by the
modified Weyl’s theorem [40, 41]. These numbers of resonances, however, are enough to
reveal resonance properties of the spiral-shaped microcavity.

A notable feature shown in figure 5 is that the resonances for n = 3 (the open triangles)
distribute in the upper part of the complex plane in comparison with those for n = 2 (the solid
circles). This implies that internal waves can be more effectively confined by the microcavity
when the reflective index n is increased. The open region is reduced with increasing n, since
the open region is −1/n < p < 1/n, and the transmission coefficient T (p) in equation (3)
decreases, e.g., for the normal incident case, T (p = 0) = 4n/(n + 1)2. Therefore, as n
increases, the resonance positions would distribute closer to the real axis.

3.2. Resonance patterns: quasiscarred resonances

The resonance patterns in the case of n = 2 and 3 corresponding to the resonance positions
in figure 5 are shown in figures 6 and 7, respectively. In the resonance patterns we note
that the basic localized structures of the resonances with relatively high Q are triangular and
star shapes for n = 2 and 3, respectively, which is closely related to the fact that the rough
polygons drawn by the rays near the critical line p = −pc are triangle and star as discussed
in the previous section. These basic structures appear in about half of the resonances. Since
the localized patterns of resonances are not supported by any exact unstable periodic orbit, we
call these quasiscarred resonances.

The patterns in figures 6 and 7 are arranged in the order of the |Im(nkR)| value, i.e.,
the upper is the smaller |Im(nkR)|. From these patterns, we can find a general rule about
the relationship between the intensity distributions of patterns and |Im(nkR)| values or Q
values. The high Q resonances with smaller |Im(nkR)| show WGM-type patterns, resulting
larger hollow region at the central part. As the |Im(nkR)| increases, resonances start to show
clear localization on the triangle or star shape geometry, i.e., quasiscarred patterns. As the
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(a) (b) (c) (d ) (e)

( f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

(z) (aa) (bb) (cc) (dd )

Figure 6. Resonance patterns for n = 2 case. These correspond to the solid circles in figure 5,
and are arranged in the increasing order of |Im(nkR)|. (The intensity of the fields is normalized by
scaling the maximum intensity inside the cavity as one.) The calculated resonance positions are
(a) nkR = (110.25,−0.0637), (b) (110.54, −0.0871), (c) (109.81, −0.0873), (d) (109.88,
−0.0887), (e) (109.97, −0.0896), (f) (110.89, −0.1003), (g) (110.81, −0.1029), (h) (109.70,
−0.1128), (i) (110.40, −0.1142), (j) (110.09, −0.1174), (k) (110.61, −0.1233), (l) (109.76,
−0.1367), (m) (109.63, −0.1866), (n) (110.12, −0.2198), (o) (109.95, −0.2297), (p) (110.65,
−0.2543), (q) (110.26, −0.2740), (r) (110.31, −0.3078), (s) (110.41, −0.3208), (t) (109.55,
−0.3375), (u) (109.70, −0.3680), (v) (109.80, −0.3684), (w) (109.59, −0.3904), (x) (110.01,
−0.3927), (y) (110.80, −0.3992), (z) (110.91, −0.4002), (aa) (110.70, −0.4036), (bb) (110.11,
−0.4063), (cc) (109.92, −0.4066) and (dd) (110.59, −0.4164), respectively.
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(a) (b) (c) (d ) (e)

( f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x)

Figure 7. Resonance patterns for n = 3 case. These correspond to the open triangles in figure 5,
and are arranged in the increasing order of |Im(nkR)|. (The intensity of the fields is normalized by
scaling the maximum intensity inside the cavity as one.) The calculated resonance positions are
(a) nkR = (110.90,−0.0654), (b) (109.92, −0.0766), (c) (110.11, −0.0873), (d) (109.60,
−0.0907), (e) (110.41, −0.0991), (f) (109.78, −0.1030), (g) (109.59, −0.1127), (h) (110.68,
−0.1135), (i) (109.52, −0.1152), (j) (110.63, −0.1303), (k) (110.81, −0.1318), (l) (110.33,
−0.1330), (m) (109.86, −0.1361), (n) (110.56, −0.1403), (o) (110.27, −0.1712), (p) (110.95,
−0.1718), (q) (109.98, −0.1829), (r) (110.12, −0.1855), (s) (110.75, −0.1885), (t) (109.73,
−0.1920), (u) (110.25, −0.2477), (v) (110.87, −0.2491), (w) (109.95, −0.2578) and (x) (110.65,
−0.2962), respectively.

|Im(nkR)| further increases, quite leaky patterns start to appear that show many beams emitted
from the cavities and result smaller hollow region at the central part. This implies that the
leaky resonances are supported by the part far above the critical line p = −pc (smaller incident
angle), while the quasiscarred resonances are done with the part near the line p = −pc in the
phase space. The quasiscarred resonances clearly show the chirality, i.e., the internal waves
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(b)(a)

Figure 8. (a) The incident Husimi function of the quasiscarred resonance (j) in figure 6. (b) The
incident Husimi function of the quasiscarred resonance (j) in figure 7. The solid line denotes the
critical line, p = −pc = −1/n.

circulate only clockwise (see the Husimi functions in figure 8), which is consistent with the
SPD structures in figure 3(a).

Now, let us consider the quasiscarring phenomenon in the dielectric microcavity. From
the results of the ray dynamical analysis and the resonance patterns, one can simply expect
that, although there is no exact unstable periodic orbit matched to the quasiscarred patterns,
slightly diffractive trajectories can make a closed orbit, and the quasiscarring phenomenon
would be based on the waves propagating along the diffractive closed orbit and satisfying the
constructive interference condition. This might be the case in the closed billiard case, but in
the dielectric microcavity case only considering the diffractive waves is not enough to explain
the numerical results. First, wave diffraction can occur equivalently in a closed spiral-shaped
billiard system, but it is not easy to find quasiscarred eigenfunctions in the closed cavity
[42, 43]. Note that about half of the resonances in figures 6 and 7 are quasiscarred in the open
dielectric microcavity. Second, the dominant pattern of quasiscarring is triangles for n = 2
and stars for n = 3. With only diffractive waves, one cannot explain why the quasiscarring
pattern changes with the refractive index n.

Therefore, in order to understand quasiscarring in dielectric microcavities, we should
take account of the unique properties of the dielectric openness. It is emphasized that the
localization of quasiscarred resonances appears near the critical line p = −pc as shown
clearly in the Husimi functions [44] in figure 8. This implies that the waves with an
incident angle near θc are effective to form the quasiscarred resonance. In fact, recent studies
[30, 45] pointed out that the wave beam propagation at a dielectric interface shows very
different behavior from the expected ray trajectory, and the difference reaches a maximum
when the incident angle of the wave beam crosses the critical angle θc. The difference is
described by the Goos–Hänchen shift [46, 47] and the Fresnel filtering effect [48]. The Goos–
Hänchen shift is the distance between the incident beam center and the reflected beam center
on the dielectric interface, and the Fresnel filtering effect gives the result that the reflection
angle of the beam is slightly greater than the incident angle of the beam due to the partial
transmission. In the triangular patterns in figure 6, when connecting the bouncing positions,
the reflection angle is greater than the incident angle by about 1.7◦. It is now believed that the
unique properties in dielectric cavities play a central role in quasiscarring phenomenon shown
in the spiral-shaped microcavity.
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Figure 9. Schematic diagram for quantifying the deviation from the periodic orbit condition. The
trajectory satisfying the reflection law, with an incident angle (φ12 + φ13)/2, is denoted by dashed
lines.

4. Bouncing positions in quasiscarred resonances

Now, we consider bouncing positions of the triangle formed in quasiscarred resonances when
n = 2 in the spiral-shaped dielectric microcavity. These have a definite dependence on their
Re(nkR) values (see figure 12). We assume that the triangle in a quasiscarred resonance would
have minimum deviation from the periodic orbit condition governed by the reflection law, and
satisfy the semiclassical quantization rule including the effect of the Maslov index [49].

4.1. Triangles showing minimum deviation from the periodic orbit condition

We quantify the deviation from the periodic orbit condition as α. Let si(i = 1, 2, 3) be the
bouncing positions of a triangle, from the angles (φij , φik) to the normal line on the boundary
at si , we can define pij = sin(φij ), pik = sin(φik) and pi = sin

(φij +φik

2

)
(here i, j, k are

cyclic). Also we get the new positions sij , sik as the next positions of (si, pi) and (si,−pi),
respectively (see figure 9). Then we define partial deviations of the triangle given by (s1, s2, s3)

as

αi = [(pi − pij )(sj − sij )]
2 + [(pi − pik)(sk − sik)]

2. (13)

Total deviation, therefore, is the sum of these terms, α = ∑3
i=1 αi . By definition, α becomes

zero when the triangle is a periodic orbit.
From a numerical calculation, we obtain the triangles which have local minimum values

of α. The local minimum value linearly decreases as s1 increases, and the corresponding
partial deviations are shown in figure 10. We can see the inequality, α1 < α2 < α3, and the α∗

is introduced for convenience and defined as α∗ = 	p2(
√

3R arcsin(	p))2 with 	p = 0.03
and R = 1, noting pc − 	p < pij,ik < pc + 	p. Figure 11 shows the bouncing positions
of the triangle showing the minimum deviation as a function of s1. They are well fitted as a
linear function of s1,

s2(s1) � 1.0326s1 + 2.1104, s3(s1) � 1.0656s1 + 4.3285. (14)

The corner angles of the triangles are almost invariant with s1. The details are p1 �
0.516, p13 � 0.529, p12 � 0.503, p2 � 0.5, p21 � 0.513, p23 � 0.487, p3 � 0.484,
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Figure 10. The minimum α(= α1 + α2 + α3) from the periodic orbit condition (see equation (13)).

p32 � 0.497 and p31 � 0.470. The lengths of the line segments of the triangles increase with
s1 and if lj is defined by the line length between sj and si , then the triangles show l2 < l1 < l3
as shown in figure 11(b). The perimeter of the triangle, L = l1 + l2 + l3, is well described by a
linear function of s1,

L(s1) � 0.0815s1 + 5.3698. (15)

This information of the triangles with minimum deviation from the periodic orbit will be
used in the following subsection and enable us to express the result in an analytic form.

4.2. The semiclassical quantization condition

To be a triangular quasiscarred resonance obtained in the previous subsection, the waves
should be exactly in phase after a round trip so that a constructive interference occurs and then
the wave inside the cavity survives for a longer time. It is known that the total accumulated
phase consists of three contributions: a dynamical phase, a pure quantum phase introduced
by boundary conditions and a topological phase associated with the rotation of the manifolds
[50]. In the present case, the dynamical phase is nkL corresponding to the phase developed
during wave propagation, where L is the perimeter of the triangle. The pure quantum phase
arises when the wave is reflected from the boundary, but it is always accompanied with the
topological phase. We note that there is a phase loss of π due to Dirichlet boundary conditions,
while the phase does not change for Neumann conditions. In the dielectric cavity, the phase
loss at the boundary varies from zero to π as the incident angle goes from θc to π/2 [33], i.e.,

φ(θ) = 2 arctan(
√

sin2 θ − 1/n2)

cos θ
. (16)
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(a) (b)

Figure 11. (a) The bouncing positions (s1, s2, s3) and (b) the lengths of line segments (l1, l2, l3)

of the triangles giving the minimum α.

Figure 12. Variation of the bouncing positions of the triangular quasiscarred resonances of n = 2
case in figure 6. The solid lines denote the results given by the semiclassical quantization condition.
Three solid circles with the same Re(nkR) correspond to the main triangular pattern, and three
open circles to the secondary triangular pattern in a quasiscarred resonance. The shaded regions
indicate the forbidden zones which is consistent with the SPD structure.

In the triangles with minimum deviation, the incident angles correspond to arcsin(p12),

arcsin(p23) and arcsin(p31). Only arcsin(p12) is greater than θc and contributes to the phase
loss. This phase loss varies slightly with s1 as

φ(s1) � −0.000 286πs1 + 0.0387π. (17)
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Figure 13. The far-field distributions P(φ) and the near-field distribution P(s) are compared with
the results from the ray dynamical analysis. (a) P(φ) for n = 2, (b) P(φ) for n = 3, (c) P(s) for
n = 2 and (d) P(s) for n = 3. The ray dynamical results based on the SPD are blue histograms,
and the wave dynamical results obtained from the resonance patterns are black solid lines.

As mentioned before, this phase loss includes the topological phase, i.e., an increment of the
Maslov index by one when reflection from the cavity occurs. Thus, the net phase loss by the
pure quantum phase would be φ − Nbπ/2, where Nb is the number of bounces, Nb = 3 for
the triangle. Finally, the topological phase is expressed by µπ/2, where µ is the Maslov
index, in the present case µ = Nb + ν, ν is the number of bounces from circular boundary, i.e.,
ν = 3 in our case. Therefore, the semiclassical quantization condition for the quasiscarred
resonance is

nkL(s1) − φ(s1) − νπ/2 = 2πm, (18)

where m is an integer. Using equations (15) and (17), we can express s1 as a function of k as

s1 = 2πm − 5.3698nk + 0.0387π + 3π/2

0.0815nk + 0.000 286π
. (19)

So, for a given nk value, we can obtain s1 from the above equation, and then use equation (14) to
get s2 and s3. The result is shown as solid lines in figure 12 where m = 94, 95 and 96 are used.
The data points correspond to the center positions of intensity peaks in the boundary functions
of the quasiscarred resonances shown in figure 6. The open circles represent the bouncing
positions of the secondary triangle of the quasiscarred resonances showing two triangles. It
is impressive that the semiclassical quantization condition gives very good agreement with
the data points. The absence of bouncing positions near s = 2.2 and 4.5 is consistent with
the dark tentacular structure of the approximate steady probability distribution Ps(s, p) in
figure 2(a) of [31].
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5. Comparison between ray and wave dynamics

As mentioned in section 2, the far-field and the near-field distribution can be calculated ray
dynamically from the SPD. The numerical results are shown as histograms in figure 13 for
both n = 2 and 3. Far-field distributions P(φ) can also be obtained by taking an average over
the individual far-field distribution of the resonances shown in figures 6 and 7. The individual
far-field distribution for a specific resonance is obtained by calculating intensities over a large
circle (the radius used is 50R) and normalizing the intensities. For the near-field distributions,
the boundary wavefunctions obtained from the boundary element method calculations are
used for the average process. In the average process, we exclude very leaky resonance modes
because the SPD characterizes long time ray dynamical behaviors and corresponds to relatively
high Q resonances. We have compared these results based on the resonance patterns (the solid
lines in figure 13) with the results from the ray dynamical analysis (histograms in figure 13).
We can see some qualitative agreement between them in spite of only a limited number of
resonances being used for calculations.

6. Conclusion

We study both the ray and wave dynamical properties in the dielectric spiral-shaped microcavity
when n = 2 and 3. The ray dynamical property is well characterized by the steady probability
distribution which contains the mixed characters of the ray dynamics and the openness of
the dielectric cavities. The quasiscarred patterns in resonances are shown as triangle for the
n = 2 case and star for the n = 3 case. These quasiscarring phenomena can be understood by
taking account of the unique property of wave propagation at the dielectric boundary. We also
explain the bouncing positions of the quasiscarred pattern using the semiclassical quantization
condition including the effect of the Maslov index, and show a qualitative agreement between
the ray and wave dynamical results in both far-field and near-field distributions.
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